
CSCI2510 Computer Organization

Lecture 07: Cache in Action

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 8.6

mailto:mcyang@cse.cuhk.edu.hk

Recall: Memory Hierarchy

CSCI2510 Lec07: Cache in Action 2022-23 T1 2

 Register: SRAM

 L1, L2 cache: SRAM

 Main memory: SDRAM

 Secondary storage:

NVM/SSD/HDD

Processor

volatile

non-volatile

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2022-23 T1 3

Cache: Fast but Small

• The cache is a small but very fast memory.

– Interposed between the processor and main memory.

• Its purpose is to make the main memory appear to

the processor to be much faster than it actually is.

– The processor does not need to know explicitly about the

existence of the cache, but just feels faster!

• How to? Exploit the locality of reference to “properly”

load some data from the main memory into the cache.
CSCI2510 Lec07: Cache in Action 2022-23 T1 4

Transparent to Processor

A

B

C

Locality of Reference

• Temporal Locality (locality in time)

– If an item is referenced, it will tend to be referenced

again soon (e.g., recent calls).

– Strategy: When the data are firstly needed,

opportunistically bring it into cache (i.e., we hope it will be

used soon).

• Spatial Locality (locality in space)

– If an item is referenced, neighboring items whose

addresses are close-by will tend to be referenced soon.

– Strategy: Rather than a single word, fetching more data

of adjacent addresses (unit: cache block) from main

memory into cache at a time.

• Cache takes both types of locality into considerations.
CSCI2510 Lec07: Cache in Action 2022-23 T1 5

Cache at a Glance

CSCI2510 Lec07: Cache in Action 2022-23 T1 6

Cache
Main

MemoryProcessor
Unit:

Cache Line (16~256 B)

Unit:

Word (32 or 64 bits)

• Cache Block / Line: The unit composed of multiple

successive memory words (size: cache block > word).

– The contents of a cache block (of memory words) will be

loaded into or unloaded from the cache at a time.

• Cache Read (or Write) Hit/Miss: The read (or write)

operation can/cannot be performed on the cache.

• Cache Management:

– Mapping Functions: Decide how cache is organized and

how addresses are mapped to the main memory.

– Replacement Algorithms: Decide which item to be

unloaded from cache when cache is full.

Read Operation in Cache

• Read Operation:

– Contents of a cache block are loaded from the memory into

the cache for the first read.

– Subsequent accesses that can be (hopefully) performed on

the cache, called a cache read hit.

– The number of cache entries is relatively small, we need to

keep the most likely to-be-used data in cache.

• When an un-cached block is required (i.e., cache read miss) but the

cache is already full, the replacement algorithm removes a cached

block and to create space for the new one.

CSCI2510 Lec07: Cache in Action 2022-23 T1 7

Cache Main
MemoryProcessor

first readcache

read hit

replacement
if full?

Write Operation in Cache

• Write Operation:

– Write-Through Scheme: The contents of cache and

main memory are updated at the same time.

– Write-Back Scheme: Update cache only but mark the

item as dirty. The corresponding contents in main memory

will be updated later when cache block is unloaded.

• Dirty: The data item needs to be written back to the main memory.

• Which scheme is simpler?

• Which one has better performance?

CSCI2510 Lec07: Cache in Action 2022-23 T1 8

Cache Main
MemoryProcessor

write-through

write-back replacement

(later)

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2022-23 T1 9

Mapping Functions (1/3)

• Cache-Memory Mapping Function: A way to record

which block of the main memory is now in cache.

• What if the cache size equals the main memory size?

• Trivial! One-to-one mapping is enough!
CSCI2510 Lec07: Cache in Action 2022-23 T1 10

Cache

(FAST)

Memory

(SLOW)

CPU

(FASTEST)

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 6

Block 7

Unit:

Cache

Line/Block

Unit:

Word

Mapping Functions (2/3)

• Reality: The cache size is much smaller (<<<) than

the main memory size.

• Many-to-one mapping is needed!

– Many blocks in memory compete for one block in cache.

– One block in cache can only represent one block in memory

at any given time.

CSCI2510 Lec07: Cache in Action 2022-23 T1 11

Cache

(FAST)

Memory

(SLOW)

CPU

(FASTEST) Block 0

Block 1

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Unit:

Cache

Line/Block

Unit:

Word

CSCI2510 Lec07: Cache in Action 2022-23 T1

Mapping Functions (3/3)

• Design Considerations of Mapping Functions:

– Efficient: Determine whether a block is in cache quickly.

– Effective: Make full use of cache to increase cache hit ratio.

• Cache Hit/Miss Ratio: the probability of cache hits/misses.

• In the following discussion, we assume:

– Synonym: Cache Line = Cache Block = Block

• Note: A cache block is of successive memory words.

– 1 Word = 16 bits = 21 Bytes

– 1 Block = 8 Words = 23 Words

– Cache Size: 2K Bytes → 128 Cache Blocks

• Cache Block (CB): The block in the cache.

– Memory Size: 16-bit Address → 216 = 64K Bytes

→ 4096 Memory Blocks

• Memory Block (MB): The block in the main memory. 12

0

1

127

Cache

Blocks

…

0

1

4095

Memory

Blocks

…

Example: Memory Block #0

CSCI2510 Lec07: Cache in Action 2022-23 T1 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Byte #0

Byte #1

Byte #2

Byte #3

Byte #4

Byte #5

Byte #6

Byte #7

Byte #8

Byte #9

Byte #10

Byte #11

Byte #12

Byte #13

Byte #14

Byte #15

Word

#0

Byte

#1

Byte

#0

Word

#1

Byte

#3

Byte

#2

Word

#2

Byte

#5

Byte

#4

Word

#3

Byte

#7

Byte

#6

Word

#4

Byte

#9

Byte

#8

Word

#5

Byte

#11

Byte

#10

Word

#6

Byte

#13

Byte

#12

Word

#7

Byte

#15

Byte

#14

0

4095

MBs

#0~#4095

Memory Block

#0

16-bit Memory Address (binary) Byte Addr.

(decimal)Block Address
Word Address

Byte Address

CSCI2510 Lec07: Cache in Action 2021-22 T1

1 Block = 23 Words

1 Word = 21 Bytes

1

Example: Memory Block #1

CSCI2510 Lec07: Cache in Action 2022-23 T1 15

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Byte #16

Byte #17

Byte #18

Byte #19

Byte #20

Byte #21

Byte #22

Byte #23

Byte #24

Byte #25

Byte #26

Byte #27

Byte #28

Byte #29

Byte #30

Byte #31

Word

#8

Byte

#17

Byte

#16

Word

#9

Byte

#19

Byte

#18

Word

#10

Byte

#21

Byte

#20

Word

#11

Byte

#23

Byte

#22

Word

#12

Byte

#25

Byte

#24

Word

#13

Byte

#27

Byte

#26

Word

#14

Byte

#29

Byte

#28

Word

#15

Byte

#31

Byte

#30

0

1

4095

…

MBs

#0~#4095

Memory Block

#0

16-bit Memory Address (binary)
Block Address

Word Address
Byte Address

Byte Addr.

(decimal)

1 Block = 23 Words

1 Word = 21 Bytes

Example: Memory Block #4095

CSCI2510 Lec07: Cache in Action 2022-23 T1 16

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B#65520

B#65521

B#65522

B#65523

B#65524

B#65525

B#65526

B#65527

B#65528

B#65529

B#65530

B#65531

B#65532

B#65533

B#65534

B#65535

Word
#32760

Byte
#65525

Byte
#65520

Word
#32761

Byte
#65525

Byte
#65522

Word
#32762

Byte
#65525

Byte
#65524

Word
#32763

Byte
#65527

Byte
#65526

Word
#32764

Byte
#65529

Byte
#65528

Word
#32765

Byte
#65531

Byte
#65530

Word
#32766

Byte
#65533

Byte
#65532

Word
#32767

Byte
#65535

Byte
#65534

0

1

4095

…

MBs

#0~#4095

Memory Block

#0

16-bit Memory Address (binary)
Block Address

Word Address
Byte Address

Byte Addr.

(decimal)

1 Block = 23 Words

1 Word = 21 Bytes

Prior Knowledge: Modulo Operator

• The modulo (%) operator is used to divide two

numbers and get the remainder.

• Example:

CSCI2510 Lec07: Cache in Action 2022-23 T1 17

Class Exercise 7.1

• Given the same dividend (10010011)2 as the previous

example, what will be the quotient and remainder if

the divisor equals to (10)2, (100)2, …, (10000000)2?

CSCI2510 Lec07: Cache in Action 2022-23 T1 18

Student ID:

Name:

Date:

Direct Mapping (1/4)

CSCI2510 Lec07: Cache in Action 2022-23 T1 20

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Direct Mapping (2/4)

• Direct Mapped Cache:

Each Memory Block will be

directly mapped to a Cache Block.

• Direct Mapping Function:

– 128? There’re 128 Cache Blocks.

– 32 MBs are mapped to 1 CB.
• MBs 0, 128, 256, …, 3968→ CB 0.

• MBs 1, 129, 257, …, 3969 → CB 1.

• …

• MBs 127, 255, 383, …, 4095 → CB 127.

CSCI2510 Lec07: Cache in Action 2022-23 T1 21

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

MB #j→ CB #(j mod 128)

– A tag is needed for each CB.
• Many MBs will be mapped to a same CB in cache.

• We need to use some cache space (cost!) to keep tags.

Direct Mapping (3/4)

CSCI2510 Lec07: Cache in Action 2022-23 T1 22

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

7 3

16-bit Main
Memory Address

Tag Block Word

5

Memory Block Number
(i.e. 0~4095)

• Trick: Interpret the 16-bit main memory

address as follows:

– Tag: Keep track of which MB is placed in the

corresponding CB.

• 5 bits: 16 – (7 + 4) = 5 bits.

– Block: Determine the CB in cache.

• 7 bits: There’re 128 = 27 cache blocks.

– Word: Select one word in a block.

• 3 bits: There’re 8 = 23 words in a block.

– Byte: Select one byte in a word.

• 1 bits: There’re 2 = 21 bytes in a word.

• Ex: CPU is looking for (0FF4)16

– MAR = (0000 1111 1111 0100)2

– MB = (0000 1111 1111)2 = (255)10

– CB = (1111111)2 = (127)10

– Tag = (00001)2

00001

0000111111110100

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Direct Mapping (4/4)

• Why the first 5 bits for tag? And

why the middle 7 bits for block?

• Search a 16-bit address (t, b, w, b):

 See if MB (t, b) is already in CB b

by comparing t with the tag of CB b.

 If not, replace CB b with MB (t, b)

and update tag of CB b using t.

 Finally access the word w in CB b.
CSCI2510 Lec07: Cache in Action 2022-23 T1 23

000011111111010010000000)

00001 Quotient

Remainder

(128)10

MB #j→ CB #(j mod 128)

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127
00001

10000000

1111111

7 3

16-bit Main
Memory Address

Tag Block Word

5

Memory Block Number
(i.e. 0~4095)

0000111111110100

1

B

Class Exercise 7.2

• Assume direct mapping is used to manage

the cache, and all CBs are empty initially.

• Considering CPU is looking for (8010)16:

– Which MB will be loaded into the cache?

– Which CB will be used to store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 2022-23 T1 24

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

7 3

16-bit Main
Memory Address

Tag Block Word

5

Memory Block Number
(i.e. 0~4095)

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Associative Mapping (1/3)

CSCI2510 Lec07: Cache in Action 2022-23 T1 26

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Associative Mapping (2/3)

• Direct Mapping: A MB is restricted to a particular CB

determined by mod operation.

CSCI2510 Lec07: Cache in Action 2022-23 T1 27

• Associative Mapping:

• Trick: Interpret the 16-bit main

memory address as follows:

– Tag: The first 12 bits (i.e., the

MB number) are all used to

represent a MB.

– Word & Byte: The last 3 & 1 bits

for selecting a word & byte in a

block.

tag

tag

tag

Cache

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

Main
Memory

12

Tag

16-bit Main
Memory Address

Memory Block Number
(i.e. 0~4095)

Allow a MB to be mapped

to any CB in the cache.

3

Word

1

B

Associative Mapping (3/3)

• How to determine the CB?

– There’s no pre-determined CB for any MB.

– All CBs are used in the first-come-first-serve (FCFS) basis.

• Ex: CPU is looking for (0FF4)16

– Assume all CBs are empty.

– MAR = (0000 1111 1111 0100)2

– MB = (0000 1111 1111)2 = (255)10

– Tag = (0000 1111 1111)2

CSCI2510 Lec07: Cache in Action 2022-23 T1 28

tag

tag

tag

Cache

Block 0

Block 1

Block 255

Block 4095

Block 0

Block 1

Block 127

Main
Memory

12

Tag

16-bit Main
Memory Address

Memory Block Number
(i.e. 0~4095)

000011111111

• Search a 16-bit addr. (t, w, b):

– ALL tags of 128 CBs must be

compared with t to see whether

MB t is currently in the cache.

• 128 tag comparisons can be done

in parallel by hardware (cost!).

3

Word

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Class Exercise 7.3

• Assume associative mapping is used to manage the

cache, and all CBs are empty initially.

• Considering CPU is looking for (8010)16:

– Which MB will be loaded into the cache?

– Which CB will be used to store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 2022-23 T1 29

tag

tag

tag

Cache

Block 0

Block 1

Block ???

Block 4095

Block 0

Block 1

Block 127

Main
Memory

12

Tag

16-bit Main
Memory Address

Memory Block Number
(i.e. 0~4095)

3

Word

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Set Associative Mapping (1/3)

CSCI2510 Lec07: Cache in Action 2022-23 T1 31

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Set Associative Mapping (2/3)

• Set Associative Mapping: A combination

of direct mapping and associative mapping

CSCI2510 Lec07: Cache in Action 2022-23 T1 32

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

– Direct: First map a MB to a

cache set (instead of a CB)

– Associative: Then map to

any CB in the cache set

• K-way Set Associative:

A cache set is of k CBs.

– Ex: 2-way set associative

• 128 ÷ 2 = 64 (𝑠𝑒𝑡𝑠)

• For MB #j, (j mod 64)

derives the Set number.

– E.g. MBs 0, 64, 128, …, 4032

→ Cache Set #0.

Set Associative Mapping (3/3)

CSCI2510 Lec07: Cache in Action 2022-23 T1 33

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 4095

Block 255

6 6

Tag Set

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

16-bit Main
Memory Address

• Consider 2-way set associative.

• Trick: Interpret the 16-bit

address as follows:

– Tag: The first 6 bits (quotient).

– Set: The middle 6 bits (remainder).

• 6 bits: There’re 26 cache sets.

– Word & Byte: The last 3 & 1 bits.

Ex: CPU is looking for (0FF4)16

– Assume all CBs are empty.

– MAR = (0000 1111 1111 0100)2

– MB = (0000 1111 1111)2 = (255)10

– Cache Set = (111111)2 = (63)10

– Tag = (000011)2

Note: ALL tags of CBs in a set must be

compared (done in parallel by hardware).
Memory Block Number

(i.e. 0~4095)

000011

3

Word

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Class Exercise 7.4

• Assume 2-way set associative mapping is used,

and all CBs are empty initially.

• Considering CPU is looking for (8010)16:

– Which MB will be loaded into the cache?

– Which CB will store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 2022-23 T1 34

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 4095

Block ???

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1 Block = 23 Words

1 Word = 21 Bytes

Summary of Mapping Functions (1/2)

CSCI2510 Lec07: Cache in Action 2022-23 T1 36

Direct

A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

A Memory Block is

directly mapped (%)

to a Cache Set.

In a Set? Associative!

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Summary of Mapping Functions (2/2)

CSCI2510 Lec07: Cache in Action 2022-23 T1 37

Direct Associative Set Associative

64 = 26 Cache Sets

Assume: 2-way

set associative

is used.

12

Tag

16-bit Main
Memory Address

7

16-bit Main
Memory Address

Tag Block

5

Memory Block Number
(i.e. 0~4095)

Memory Block Number
(i.e. 0~4095)

128 = 27

Cache Blocks

6 6

Tag Set

16-bit Main
Memory Address

Memory Block Number
(i.e. 0~4095)

3

Word

1

B

3

Word

1

B

3

Word

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2022-23 T1 38

Replacement Algorithms

CSCI2510 Lec07: Cache in Action 2022-23 T1 39

• Replace: Write Back (to old MB) & Overwrite (with new MB)

• Direct Mapped Cache:

– The CB is pre-determined directly by the memory address.

– The replacement strategy is trivial: Just replace the pre-

determined CB with the new MB.

• Associative and Set Associative Mapped Cache:

– Not trivial: Need to determine which block to replace.

• Optimal Replacement: Always keep CBs, which will be used

sooner, in the cache, if we can look into the future (not practical!!!).

• Least recently used (LRU): Replace the block that has gone the

longest time without being accessed by looking back to the past.

– Rationale: Based on temporal locality, CBs that have been referenced

recently will be most likely to be referenced again soon.

• Random Replacement: Replace a block randomly.

– Easier to implement than LRU, and quite effective in practice.

Optimal Replacement Algorithm

• Optimal Algorithm: Replace the CB that will not be

used for the longest period of time (in the future).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

– The optimal algorithm causes 9 times of cache misses.

CSCI2510 Lec07: Cache in Action 2022-23 T1 40

MB

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0 7 7 7 2 2 2 2 2 7

CB 1 0 0 0 0 4 0 0 0

CB 2 1 1 3 3 3 1 1

time

LRU Replacement Algorithm

• LRU Algorithm: Replace the CB that has not been

used for the longest period of time (in the past).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

– The LRU algorithm causes 12 times of cache misses.

CSCI2510 Lec07: Cache in Action 2022-23 T1 41

MB

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0 7 7 7 2 2 4 4 4 0 1 1 1

CB 1 0 0 0 0 0 0 3 3 3 0 0

CB 2 1 1 3 3 2 2 2 2 2 7

time

Class Exercise 7.5

• First-In-First-Out Algorithm: Replace the CB that

has arrived for the longest period of time (in the past).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

• Please fill in the cache and state cache misses.

CSCI2510 Lec07: Cache in Action 2022-23 T1 42

MB

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0

CB 1

CB 2

time

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2022-23 T1 44

• Cache Configuration:

– Cache has 8 blocks.

– A block is of 1 (= 20) word.

– A word is of 16 bits.

• Consider a program:

1) Computes the sum of the

first column of an array

using a forward loop.

2) Normalizes the first

column of an array by its

mean (i.e. average) using

a backward loop.

– A[10][4] is an array of

words located at the

memory word addresses

(7A00)16~(7A27)16

in row-major order.

Cache Example

CSCI2510 Lec07: Cache in Action 2022-23 T1 45

short A[10][4];

int sum = 0;

int j, i;

double mean;

// 1) forward loop

for (j = 0; j <= 9; j++)

sum += A[j][0];

mean = sum / 10.0;

// 2) backward loop

for (i = 9; i >= 0; i--)

A[i][0] = A[i][0] / mean;

Row-Major vs. Column-Major Order

• Row-major order and column-major order are

methods for organizing multi-dimensional arrays in

main memory (which appears to programs as a

single, continuous address space).

CSCI2510 Lec07: Cache in Action 2022-23 T1 46

https://en.wikipedia.org/wiki/Row-_and_column-major_order

– Row-Major: The consecutive elements of a

row reside next to each other.

– Column-Major: The consecutive elements

of a column reside next to each other.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8

memory a11 a12 a13 a21 a22 a23 a31 a32 a33

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8

memory a11 a21 a31 a12 a22 a32 a13 a23 a33

CSCI2510 Lec07: Cache in Action 2022-23 T1

• A block is of 20 word: There is no “word” bit.

• A word is of 21 bytes: There is one “byte” bit (X).

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Cache Example (Cont’d)

47

1 1 1 1 10 0 0 0 0 0 0 0 0 0
1 1 1 1 10 0 0 0 0 0 0 0 0 1
1 1 1 1 10 0 0 0 0 0 0 0 01
1 1 1 1 10 0 0 0 0 0 0 0 1 1

1 1 1 1 10 0 0 0 0 0 0 1 0 0

1 1 1 1 10 0 0 0 1 0 0 1 0 0
1 1 1 1 10 0 0 0 1 0 0 1 0 1
1 1 1 1 10 0 0 0 1 0 0 1 01

1 1 1 1 10 0 0 0 1 0 0 1 1 1

Hex.

(7A00)16

(7A01)16

(7A02)16

(7A03)16

(7A04)16

(7A24)16

(7A25)16

(7A26)16

(7A27)16

(
(
(
(

(

(
(
(

(

A[0][0]

A[0][1]

A[0][2]

A[0][3]

A[1][0]

A[9][0]

A[9][1]

A[9][2]

A[9][3]

Memory
Blocks/Words

)2

)2

)2

)2

)2

)2

)2

)2

)2

Binary

…… …

Tag for Direct Mapped

Tag for Set-Associative

Tag for Associative

3

1

Memory Block/Word Address (15-bit)

Tag: 12 bits

Tag: 14 bits

Tag: 15 bits

A[10][4];

at word addresses

(7A00)16~(7A27)16

in row-major order:

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2] A[3][3]

A[4][0] A[4][1] A[4][2] A[4][3]

A[5][0] A[5][1] A[5][2] A[5][3]

A[6][0] A[6][1] A[6][2] A[6][3]

A[7][0] A[7][1] A[7][2] A[7][3]

A[8][0] A[8][1] A[8][2] A[8][3]

A[9][0] A[9][1] A[9][2] A[9][3]

4 blocks/set, 2 = 21 cache sets → 1 bit encodes cache set number

8 = 23 blocks in cache → 3 bits encodes cache block number

X
X
X
X

X

X
X
X

X

Direct Mapping

• The last 3-bits of address decide the CB.

– Memory Block Num. % 8 → Cache Block Num.

• No replacement algorithm is needed.

• When i = 9 and i = 8: 2 cache hits in total.

• Only 2 out of the 8 cache positions are used.

– Very poor cache utilization: 25%

CSCI2510 Lec07: Cache in Action 2022-23 T1 48

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block

Number

0 A[0][0] A[0][0] A[2][0] A[2][0] A[4][0] A[4][0] A[6][0] A[6][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[6][0] A[6][0] A[4][0] A[4][0] A[2][0] A[2][0] A[0][0]

1

2

3

4 A[1][0] A[1][0] A[3][0] A[3][0] A[5][0] A[5][0] A[7][0] A[7][0] A[9][0] A[9][0] A[9][0] A[7][0] A[7][0] A[5][0] A[5][0] A[3][0] A[3][0] A[1][0] A[1][0]

5

6

7

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed!

Class Exercise 7.6

• Assume direct mapped cache is used.

• What if the i loop is a forward loop?

CSCI2510 Lec07: Cache in Action 2022-23 T1 49

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

Cache

Block

Number

0 A[0][0] A[0][0] A[2][0] A[2][0] A[4][0] A[4][0] A[6][0] A[6][0] A[8][0] A[8][0]

1

2

3

4 A[1][0] A[1][0] A[3][0] A[3][0] A[5][0] A[5][0] A[7][0] A[7][0] A[9][0]

5

6

7

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed!

Associative Mapping

• All CBs are used in the FCFS basis.

• LRU replacement policy is used.

• When i = 9, 8, …, 2: 8 cache hits in total.

• 8 out of the 8 cache positions are used.

– Optimal cache utilization: 100%

CSCI2510 Lec07: Cache in Action 2022-23 T1 51

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block

Number

0 A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[0][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[1][0] A[1][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0]

4 A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0]

5 A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0]

6 A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0]

7 A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0]

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed!

Class Exercise 7.7

• Assume associative mapped cache is used.

• What if the i loop is a forward loop?

CSCI2510 Lec07: Cache in Action 2022-23 T1 52

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

Cache

Block

Number

0 A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[8][0] A[8][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[9][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0]

4 A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0]

5 A[5][0] A[5][0] A[5][0] A[5][0] A[5][0]

6 A[6][0] A[6][0] A[6][0] A[6][0]

7 A[7][0] A[7][0] A[7][0]

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed!

4-way Set Associative Mapping

• There are total 8 ÷ 4 = 2 Cache Sets.

– Memory Block Num. % 2 → Cache Set Num.

• The numbers of accessed MBs are all “even” (e.g.

7A00, 7A04) → Mapped to Cache Set #0.

• LRU replacement policy is used.

• When i = 9, 8, …, 6: 4 cache hits in total.

• 4 out of the 8 cache positions are used (50% Util.).

CSCI2510 Lec07: Cache in Action 2022-23 T1 54

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

CB #

0 A[0][0] A[0][0] A[0][0] A[0][0] A[4][0] A[4][0] A[4][0] A[4][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[4][0] A[4][0] A[4][0] A[4][0] A[0][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[5][0] A[5][0] A[5][0] A[5][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[5][0] A[5][0] A[5][0] A[5][0] A[1][0] A[1][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[3][0] A[3][0] A[3][0] A[3][0]

4

5

6

7

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Set 0

Set 1

Tags not shown but are needed!

Class Exercise 7.8

• Assume 4-way set associative mapped

cache is used.

• What if the i loop is a forward loop?

CSCI2510 Lec07: Cache in Action 2022-23 T1 55

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

CB #

0 A[0][0] A[0][0] A[0][0] A[0][0] A[4][0] A[4][0] A[4][0] A[4][0] A[8][0] A[8][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[5][0] A[5][0] A[5][0] A[5][0] A[9][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[6][0] A[6][0] A[6][0] A[6][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[7][0] A[7][0] A[7][0]

4

5

6

7

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Set 0

Set 1

Tags not shown but are needed!

Summary

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2022-23 T1 57

